5,927 research outputs found

    Environmental Impact on the Southeast Limb of the Cygnus Loop

    Full text link
    We analyze observations from the Chandra X-ray Observatory of the southeast knot of the Cygnus Loop supernova remnant. In this region, the blast wave propagates through an inhomogeneous environment. Extrinsic differences and subsequent multiple projections along the line of sight rather than intrinsic shock variations, such as fluid instabilities, account for the apparent complexity of the images. Interactions between the supernova blast wave and density enhancements of a large interstellar cloud can produce the morphological and spectral characteristics. Most of the X-ray flux arises in such interactions, not in the diffuse interior of the supernova remnant. Additional observations at optical and radio wavelengths support this account of the existing interstellar medium and its role in shaping the Cygnus Loop, and they demonstrate that the southeast knot is not a small cloud that the blast wave has engulfed. These data are consistent with rapid equilibration of electron and ion temperatures behind the shock front, and the current blast wave velocity v_{bw} approx 330 km/s. Most of this area does not show strong evidence for non-equilibrium ionization conditions, which may be a consequence of the high densities of the bright emission regions.Comment: To appear in ApJ, April 1, 200

    Toward High-Precision Astrometry with WFPC2. I. Deriving an Accurate PSF

    Full text link
    The first step toward doing high-precision astrometry is the measurement of individual stars in individual images, a step that is fraught with dangers when the images are undersampled. The key to avoiding systematic positional error in undersampled images is to determine an extremely accurate point-spread function (PSF). We apply the concept of the {\it effective} PSF, and show that in images that consist of pixels it is the ePSF, rather than the often-used instrumental PSF, that embodies the information from which accurate star positions and magnitudes can be derived. We show how, in a rich star field, one can use the information from dithered exposures to derive an extremely accurate effective PSF by iterating between the PSF itself and the star positions that we measure with it. We also give a simple but effective procedure for representing spatial variations of the HST PSF. With such attention to the PSF, we find that we are able to measure the position of a single reasonably bright star in a single image with a precision of 0.02 pixel (2 mas in WF frames, 1 mas in PC), but with a systematic accuracy better than 0.002 pixel (0.2 mas in WF, 0.1 mas in PC), so that multiple observations can reliably be combined to improve the accuracy by √N\surd N.Comment: 33 pp. text + 15 figs.; accepted by PAS

    Instabilities and propagation of neutrino magnetohydrodynamic waves in arbitrary direction

    Get PDF
    In a previous work [16], a new model was introduced, taking into account the role of the Fermi weak force due to neutrinos coupled to magnetohydrodynamic plasmas. The resulting neutrino-magnetohydrodynamics was investigated in a particular geometry associated with the magnetosonic wave, where the ambient magnetic field and the wavevector are perpendicular. The corresponding fast, short wavelength neutrino beam instability was then obtained in the context of supernova parameters. The present communication generalizes these results, allowing for arbitrary direction of wave propagation, including fast and slow magnetohydrodynamic waves and the intermediate cases of oblique angles. The numerical estimates of the neutrino-plasma instabilities are derived in extreme astrophysical environments where dense neutrino beams exist

    Evolution of the Dark Matter Distribution at the Galactic Center

    Get PDF
    Annihilation radiation from neutralino dark matter at the Galactic center (GC) would be greatly enhanced if the dark matter were strongly clustered around the supermassive black hole (SBH). The existence of a dark-matter "spike" is made plausible by the observed, steeply-rising stellar density near the GC SBH. Here the time-dependent equations describing gravitational interaction of the dark matter particles with the stars are solved. Scattering of dark matter particles by stars would substantially lower the dark matter density near the GC SBH over 10^10 yr, due both to kinetic heating, and to capture of dark matter particles by the SBH. This result suggests that enhancements in the dark matter density around a SBH would be modest whether or not the host galaxy had experienced the scouring effects of a binary SBH.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter

    The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    Full text link
    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, the method suffers a systematic error of order T/E0, where T is the plasma temperature and E0 is the initial energy of the charged particle. In the case of DT fusion, for example, this can lead to uncertainties as high as 10% or so. The formalism presented here is designed to account for the thermalization process, and in contrast, it provides results that are near-exact.Comment: 10 pages, 3 figures, invited talk at the 35th European Physical Society meeting on plasma physic

    Distance-redshift from an optical metric that includes absorption

    Full text link
    We show that it is possible to equate the intensity reduction of a light wave caused by weak absorption with a geometrical reduction in intensity caused by a "transverse" conformal transformation of the spacetime metric in which the wave travels. We are consequently able to modify Gordon's optical metric to account for electromagnetic properties of ponderable material whose properties include both refraction and absorption. Unlike refraction alone however, including absorption requires a modification of the optical metric that depends on the eikonal of the wave itself. We derive the distance-redshift relation from the modified optical metric for Friedman-Lema\^itre-Robertson-Walker spacetimes whose cosmic fluid has associated refraction and absorption coefficients. We then fit the current supernovae data and provide an alternate explanation (other than dark energy) of the apparent acceleration of the universe.Comment: 2 figure

    High-Precision Entropy Values for Spanning Trees in Lattices

    Full text link
    Shrock and Wu have given numerical values for the exponential growth rate of the number of spanning trees in Euclidean lattices. We give a new technique for numerical evaluation that gives much more precise values, together with rigorous bounds on the accuracy. In particular, the new values resolve one of their questions.Comment: 7 pages. Revision mentions alternative approach. Title changed slightly. 2nd revision corrects first displayed equatio

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil
    • …
    corecore